

In-Line Liquid Detonation Flame Arrester

for filling lines - external installation

PROTEGO® LDA-W

Tank connection / protected side

Function and Description

The PROTEGO® LDA-W liquid detonation flame arrester was developed for storage container filling lines that are not continuously filled with product and sometimes contain a combustible mixture. The device is installed outside of the container in the filling line. If the explosive atmosphere is ignited, the device prevents the combustion from traveling into the tank. The PROTEGO® LDA-W series of liquid detonation flame arresters functions according to the siphon principle in which the liquid product serves as a barrier against flame propagation.

When a highly accelerated pipe deflagration or detonation occurs, the combustion pressure and flame propagation speed is first substantially reduced by the construction and converted into a low-energy deflagration that is then stopped by the remaining immersion liquid.

The application range for the device is a product vapour/ air mixture temperature up to $+60^{\circ}\text{C}$ / 140°F and an absolute pressure up to 1.1 bar / 15.9 psi. This covers all of the possible operating conditions of empty lines for flammable liquids. The liquid detonation arrester is designed for pressures up to 10 bar / 145 psi and therefore resists explosion pressure offering protection for almost all flammable liquids. The device is approved for explosion groups IIA to IIB3 (NEC group D to C MESG \geq 0.65 mm). Special designs with a cleaning cover for highly viscous and contaminated liquids can be provided.

Type-approved in accordance with the current ATEX Directive and EN ISO 16852 as well as other international standards.

Special Features and Advantages

- the device is easily accessible since it is mounted on the containers outside
- · minimum risk of soiling
- · low pressure loss
- provides protection from deflagrations and stable detonations
- · useful for nearly all flammable liquids
- · meets TRbF* requirements
- · maintenance friendly design also useable as strainer
- *TRbF = technical regulations for flammable liquids

Table 1: Dimensions Dimensions in mm /					n / inches							
To select the nominal size (DN), please use the flow capacity chart on the following pages												
DN	25	32	40	50	65	80	100	125	150	200	250	300
	1"	1 ¼"	1 ½"	2"	2 ½"	3"	4"	5"	6"	8"	10"	12"
а	250 /	275 /	350 /	350 /	450 /	450 /	500 /	600 /	600 /	700 /	850 /	1000 /
	9.84	10.83	13.78	13.78	17.72	17.72	19.69	23.62	23.62	27.56	33.46	39.37
b	325 /	360 /	420 /	420 /	540 /	540 /	595 /	915 /	915 /	1100 /	1325 /	1480 /
	12.80	14.17	16.54	16.54	21.26	21.26	23.43	36.02	36.02	43.31	52.17	58.27
С	445 /	480 /	565 /	565 /	720 /	720 /	800 /	1265 /	1265 /	1520 /	1830 /	2050 /
	17.52	18.90	22.24	22.24	28.35	28.35	31.50	49.80	49.80	59.84	72.05	80.71
d	140 /	140 /	195 /	195 /	275 /	275 /	325 /	460 /	460 /	510 /	610 /	700 /
	5.51	5.51	7.68	7.68	10.83	10.83	12.80	18.11	18.11	20.08	24.02	27.56

Table 2: Selection of the explosion group							
MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC)					
> 0,90 mm	IIA	D	Special approvals upon request				
≥ 0,65 mm	IIB3	С					

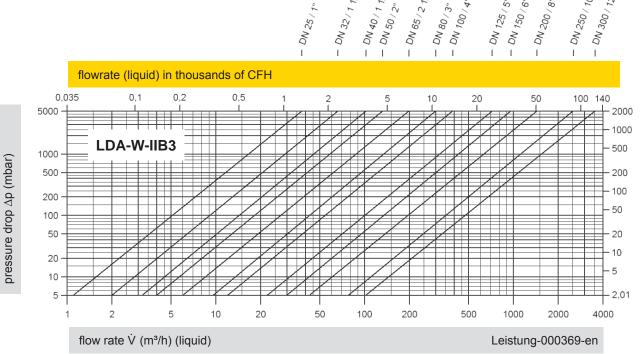
Table 3: Specification of max. operating temperature

≤ 60°C / 140°F	Tmaximum allowable operating temperature in °C	higher enerating temperatures upon request
_	Designation	higher operating temperatures upon request

Table 4: Material selection for housing

		0		
Design	Α	В	С	
Housing	Steel	Stainless Steel	Hastelloy	
Gasket	PTFE	PTFE	PTFE	

Special materials upon request


Table 5: Flange connection type

EN 1092-1; Form B1

ASME B16.5; 150 lbs RFSF

other types upon request

Conversion:
$$\vec{V}_{liquid} = \vec{V}_{water} * \sqrt{\frac{P_{water}}{P_{liquid}}}$$

The volume flow \dot{V} in m³/h was determined with water according to DIN EN 60534 at a temperature T_n = 15°C and an atmospheric pressure p_n = 1,013 bar, kinematic viscosity $v = 10^{-6}$ m²/s.

To avoid electrostatic charge of flammable liquids the maximum flow is limited (refer to BG-Regulation 132, CENELEC-Report CLC/TR 50404).

